
 

 

Migrate DB Schema Without Downtime 

www.thoughts-on-java.org 

High-available systems make heavy use of redundancy to avoid 
downtime if one instance crashes. The redundancy of the application 
plays a critical role during the migration. It enables you to perform a 
rolling update. 

The implementation of a rolling update depends on your technology 
stack. But the idea is always the same: You have a bunch of instances 
of a subsystem and you shutdown, update, and restart one instance 
after the other. While doing that, you run the old and the new version 
of your application in parallel. 

 

Multi-Step Migration Process 
The rolling update adds a few requirements to your database 
migration. You no longer need to just adapt the database in the way 
it’s required by your application; you also need to do it in a way that 
the old and the new version of your application can work with the 
database. That means that all migrations need to be backward-
compatible as long as you’re running at least one instance of the old 
version of your application. But not all operations, e.g., renaming or 
removing a column, are backward compatible. These operations 
require a multi-step process that enables you to perform the 
migration without breaking your system. 

 

Backward-Compatible Operations 
Backward-compatible operations are all operations that change your 
database in a way that it can be used by the old and the new version 
of your application. 

Add a table or a view 

Adding new tables or views doesn’t affect the old instances of your 
application. Just keep in mind that while you’re performing the rolling 
update, some users might trigger write operations on old application 
instances. You might need to clean up your data and add missing 
records to the new table after all application instances have been 
migrated. 

http://www.thoughts-on-java.org/


 

 

Migrate DB Schema Without Downtime 

www.thoughts-on-java.org 

Add a column 

Adding a new column without a not null constraint is also a backward 
compatible operation that you can perform without any risk. 

If you need to introduce a new column with a not null constraint, you 
either need to provide a default value for all old records or follow this 
process: 

1. Add the column without a default value and update all 
application instances. 

2. Run a database script to fill that field in all existing records. 
3. Add the not null constraint. 

Remove a column that’s not used by the old and the new version of your application 

Removing a database column that is neither accessed by the old nor 
the new version of your application is also a backward-compatible 
operation. 

Remove constraints 

The removal of the constraint itself is a backward-compatible 
operation. The old version of your application can still write to the 
database in the same way as it did before. 

But you need to check if there are any old use case implementations 
that would break if any database record doesn’t fulfill the constraint. I 
don’t know any good way to solve this issue. Your only option is to 
remove the constraint and to roll-out the update quickly. 

 

Backward-Incompatible Operations 
Backward-incompatible operations are all the operations that change 
your database schema in a way that it can no longer be used by the 
old version of your application. You need to break these operations 
into a backward-compatible part which you perform before you 
update your application and a second part that you execute after you 
updated all application instances. In most cases, that requires you to 
add a new column or table in the first and to remove the old one in a 
later step. 

http://www.thoughts-on-java.org/


 

 

Migrate DB Schema Without Downtime 

www.thoughts-on-java.org 

 

 

Rename a column, a table or a view 

The main issues of this migration occur during the rolling update of 
your application. While doing that, you’re running old and new 
versions of your application in parallel. The old version is still using 
the old database column, and the new one is using the new column. 
So, you need to make sure that both use the same data and that you 
don’t lose any write operations. 

Option 1: Sync with database triggers 

1. Add a column with the new name and the same data type as the 
old one. You then copy all data from the old column to the new 
one. 
You also need to add database triggers to keep both columns in 
sync so that neither the old nor the new version of your 
application works on outdated data. 

2. Perform a rolling update of all application instances. 
3. Remove the old database column and the database triggers. 

 

Option 2: Sync programmatically 

1. Add a column with the new name and the same data type as the 
old one. You then copy all data from the old column to the new 
one. 

2. Make sure that the new version of your application reads from 
and writes to the old and the new database column. Let’s call 
this version new1. 

http://www.thoughts-on-java.org/


 

 

Migrate DB Schema Without Downtime 

www.thoughts-on-java.org 

Please also keep in mind that there are still old instances of 
your application that don’t know about the new column and 
that can write new and update existing records at any time. As 
your database doesn’t synchronize the write operations, you 
need to do that in the code of version new1. 
After you’ve made sure that the new1 version of your 
application can handle this situation, you can perform a rolling 
update of all application instances. 

3. All of your application instances now run version new1 which 
knows about the new database column. You can now perform a 
rolling update to application version new2 which only uses the 
new database column. 

4. Remove the old database column. 

Change the data type of a column 

You can change the data type of a column in almost the same way as 
you rename the column. 

Remove a column or table or view that’s still used by the old version of your 
application 

I’m sorry to tell you that you can’t remove that column/table/view. 
At least not now. You first need to update your application so that 
there is no running instance of it that still uses it. After you’ve done 
that, you can remove the no longer used column/table/view from 
your database. 

http://www.thoughts-on-java.org/

